Tetrahedron Letters 51 (2010) 6932-6934

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

An unexpected rearrangement of the benzofurobenzazepine skeleton of galanthamine-type alkaloids

Klára Herke^a, László Hazai^b, Zsuzsanna Sánta^c, Zsófia Dubrovay^c, Viktor Háda^c, Csaba Szántay Jr.^c, György Kalaus^b, Csaba Szántay^{a,b,*}

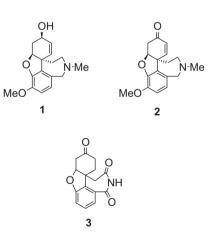
^a Department of Organic Chemistry and Technology, University of Technology and Economics, H-1111 Budapest, Szt. Gellért tér 4., Hungary ^b Research Group for Alkaloid Chemistry of the Hungarian Academy of Sciences, H-1111 Budapest, Szt. Gellért tér 4., Hungary ^c Spectroscopic Research Division, Gedeon Richter Plc., H-1475 Budapest 10, PO Box 27, Hungary

ARTICLE INFO

Article history: Received 14 June 2010 Revised 14 October 2010 Accepted 29 October 2010 Available online 4 November 2010

Keywords: Amaryllidaceae alkaloids Spirocyclohexenone Rearrangement Cyclopentanoisoquinolinone

ABSTRACT

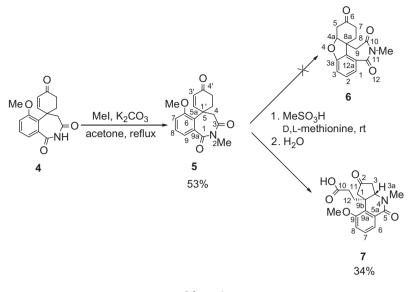

Attempted cyclisation of N-methylated spiro benzazepine–cyclohexenone (**5**) into the corresponding *N*-methyl tetracyclic unit of galanthamine-type alkaloids (**6**) instead gave an unexpected rearrangement to yield a cyclopentanoisoquinolinone derivative (**7**). Methylation of the tetrahydrobenzofurobenzazepine tetracycle resulted in the expected *N*-methyl derivative **6**, and the anomalous product **8**, with structure similar to that of **7**.

 $\ensuremath{\textcircled{}^{\circ}}$ 2010 Elsevier Ltd. All rights reserved.

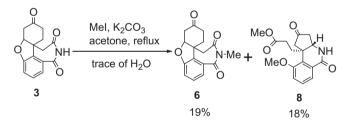
(–)-Galanthamine (**1**) is an *Amaryllidaceae* alkaloid,¹ isolated from the flowers and bulbs of the Caucasian snowdrop (*Galanthus woronowii*), and exhibits competitive and reversible acetylcholine esterase (AChE) inhibition. Moreover, this molecule displays allosteric potentiation of neuronal nicotinic receptors for acetylcholine.² (–)-Galanthamine hydrobromide (Razadyne, Reminyl) enhances significantly cognitive functions and is used for the treatment of mild to moderate Alzheimer's disease.^{3,4}

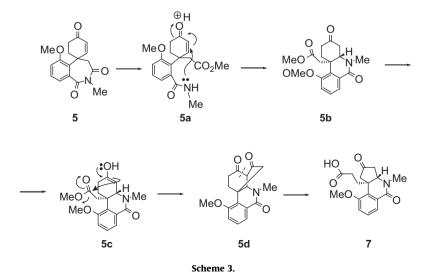
A number of synthetic routes have been elaborated¹ for the preparation of (–)-galanthamine using different key steps to form the tetracyclic ring system characteristic of galanthamine-type *Amaryllidaceae* alkaloids.^{5–9} Most synthetic strategies utilized a biomimetic approach via intramolecular phenolic oxidative coupling to install the quaternary spiro carbon. In relation to this type of synthetic processes, narwedine (**2**) as well as its biogenetic precursor¹⁰ can be considered the most important intermediates.

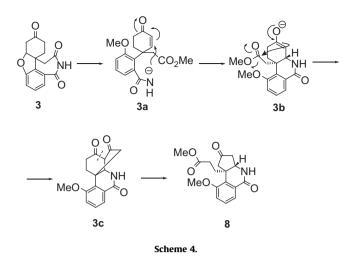
Recently,¹¹ we succeeded in synthesizing the hexahydrobenzofurobenzazepine trione **3** which represents the appropriate key intermediate for the preparation of the demethoxy derivative of narwedine (**2**). The synthesis of compound **3** was achieved starting from spirocyclohexenone derivative **4** in one step via demethylation of the methoxy group and cyclisation using methanesulfonic acid in the presence of methionine.¹¹


The spiro compound $4^{11,12}$ was N-methylated with methyl iodide in refluxing acetone in the presence of anhydrous potassium carbonate (Scheme 1) giving *N*-methyl derivative **5** in 53% yield. Next, the cyclisation reaction was performed like that used for the preparation of tetracycle **3**. Compound **5** was allowed to react in methanesulfonic acid in the presence of racemic methionine at room temperature for several hours. After work-up, however, the *N*-methyl tetracycle **6** was not isolated, but instead the unexpected cyclopentanoisoquinolinone derivative **7** was obtained. This type of tricyclic dione is unknown in the literature.

^{*} Corresponding author. Tel.: +36 1 463 1195; fax: +36 1 463 3297. *E-mail address: szantay@mail.bme.hu* (C. Szántay).


^{0040-4039/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.10.158


Our next attempt to obtain the target molecule was to allow the hexahydrobenzofurobenzazepine tetracycle **3** to react with methyl iodide so as to prepare the *N*-methyl imide **6**. The reaction conditions in this procedure were the same as those used for the methylation of spiro derivative **4** (Scheme 2).


In this reaction two products were isolated: the expected *N*-methyl tetracycle **6** was obtained in 19% yield, and surprisingly, as in the previously attempted cyclisation reaction, the analogous tricyclic cyclopentanoisoquinoline dione **8** was also obtained.

Scheme 2.

High-resolution mass spectrometric data indicated that compound 7^{13} had the elementary composition $C_{17}H_{19}NO_5$ (as opposed to $C_{16}H_{15}NO_4$ for compound **6**). In the ¹H NMR spectra, one of the most conspicuous differences between 7 and 6 is a doublet of doublets signal belonging to a CH methine proton at 4.10 ppm in the ¹H spectrum of **7** instead of the expected triplet signal at 4.90 ppm due to H-4a as for **6**. The corresponding carbon signal in 7 occurred at 62.7 ppm, (86.5 ppm in 6). These chemical shifts indicate that this methine is situated next to a nitrogen instead of an oxygen atom. In addition, the $-CH_2-C(0)-CH_2$ - ketone carbon signal was shifted downfield by 4.5 ppm in the ¹³C spectrum of **7** compared to 6, suggesting that this carbonyl group is in a strained five-membered ring. There was a singlet at 3.84 ppm in the ¹H spectrum of 7 due to an additional O-methyl group connected to the aromatic ring. A broad singlet at 12.0 ppm, not connected to a carbon, was likely to belong to a carboxylic acid OH. From a structurally informative point of view, the 2D ¹H-¹H correlation spectrum showed a connection between the CH signal at 4.10 ppm (H-3a) and the diastereotopic CH₂ signals at 1.94 and 2.86 ppm (CH₂-3), and also between the CH₂ signals at 1.94–1.98 and 2.13–2.18 ppm (CH₂-11) and 2.00-2.05 and 2.22-2.26 ppm (CH₂-12). These data, together with further ${}^{1}H{-}^{1}H$, direct ${}^{1}H{-}^{13}C$, and long-range

¹H–¹³C scalar connectivities as measured from 2D experiments, allowed the unambiguous determination of the structure of **7** as shown in Scheme 2. The ¹H and ¹³C assignments derived from, and supported by, the 2D scalar correlation experiments are provided.¹³ The relative configuration of C(3a) and C(9b) follows from the fact that the measured vicinal $J_{3a,3\beta} = 8.1$ Hz and $J_{3a,3\alpha} = 10.6$ Hz couplings are only consistent with the *trans* geometry of the ring fusion.

The structural elucidation of compound $\mathbf{8}^{14}$ (Scheme 2) rests on an entirely analogous procedure and argument as discussed for compound $\mathbf{7}$.

The rearrangement yielding compounds **7** and **8** may be plausibly rationalized in terms of the mechanisms shown for an acidic medium in Scheme 3, and for a basic medium in Scheme 4.

In the latter case, cleavage of the ether bond provides a phenol which is subsequently methylated, and in addition a cyclohexenone is formed. After conjugate addition of the nitrogen atom on the enone, Claisen condensation occurs between the cyclohexanone methylene group and the ester group. Subsequently, a retro-Claisen condensation forms the cyclopentanone ring and the side chain, yielding the cyclopentanoisoquinoline **8**.

To sum up, we may conclude that in the course of an attempted cyclisation of compound (**5**) into a unit of galanthamine-type alkaloids (**6**) an unexpected rearrangement occurred to yield a new derivative (**7**). Subsequent methylation resulted in the expected derivative **6**, and the anomalous product **8**.

Acknowledgements

The authors are grateful to OTKA (Hungarian Academic Research Fund Grant K 68734) and to Gedeon Richter Plc for financial assistance.

References and notes

- 1. Marco-Contelles, J.; Carreiras, M. D.; Rodriguez, C.; Villarroya, M.; Garcia, A. G. Chem. Rev. 2006, 106, 116.
- Maelicke, A.; Samochocki, M.; Jostock, R.; Fehrenbacher, A.; Ludwig, J.; Albuquerque, E. X.; Zerlin, M. *Biol. Psychiatry* 2001, 49, 279.
- 3. Weinstock, M. CNS Drugs 1999, 12, 307.
- Blesa, R.; Davidson, M.; Kurz, A.; Reichman, W.; van Baelen, B.; Schwalen, S. Dementia Geriatr. Cogn. Disord. 2003, 15, 79.
- Czollner, L.; Frantsist, W.; Küenburg, B.; Hedenig, U.; Fröhlich, J.; Jordis, U. Tetrahedron Lett. 1988, 39, 2087.
- 6. Czollner, L.; Treu, M.; Fröhlich, J.; Küenburg, B.; Jordis, U. ARKIVOC 2001, i, 191.
- 7. Trost, B. M.; Tang, W.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 14785.
- Satcharoen, V.; McLean, N. J.; Kemp, S. C.; Camp, N. P.; Brown, R. C. D. Org. Lett. 2007, 9, 1867.
- 9. Ishikawa, T.; Kudo, K.; Kuroyabu, K.; Uchida, S.; Kudoh, T.; Saito, S. J. Org. Chem. 2008, 73, 7498.
- 10. Eichhorn, J.; Takada, T.; Kita, Y.; Zenk, M. H. Phytochemistry 1998, 49, 1037.
- Herke, K.; Hazai, L.; Hudák, M. Sz.; Ábrahám, J.; Sánta, Zs.; Háda, V.; Szántay, Cs., Jr.; Szántay, Cs. ARKIVOC 2009, xi, 235.
- Gorka, Á.; Hazai, L.; Szántay, Cs., Jr.; Háda, V.; Szabó, L.; Szántay, Cs. Heterocycles 2005, 65, 1359.
- 3. Spectral data are as follows for compound **7**. IR (KBr): 3436, 2929, 1747, 1641, 1277, 1256, 820, 755 cm⁻¹. ¹H NMR, (800 MHz, DMSO-*d*₆): 1.94 (ddd, 1H, *J*_{gem} = 18.6 Hz, *J*_{3α,3a} = 10.6 Hz, *J*_{3α,1α} = 2.2 Hz, H_α-3), 1.94–1.98 (m, 1H, H_x-11), 2.00–2.05 (m, 1H, H_x-12), 2.13–2.18 (m, 1H, H_y-11), 2.22–2.26 (m, 1H, H_y-12), 2.60 (dd, 1H, *J*_{gem} = 18.5 Hz, *J*_{1β,3β} = 1.3 Hz, H_β-1), 2.86 (ddt, 1H, *J*_{gem} = 18.6 Hz, *J*_{3β,3a} = 8.1 Hz, *J*_{3β,1β} = 1.3 Hz, H_β-3), 3.57 (ddd, 1H, *J*_{gem} = 18.5 Hz, *J*_{1α,3β} = 1.3 Hz, H_α-1), 3.04 (s, 3H, NCH₃), 3.84 (s, 3H, CH₃O), 4.10 (dd, 1H, *J*_{3a,3α} = 10.6 Hz, *J*_{3a,3β} = 8.1 Hz, *H*_β-3), 7.26 (dd, 1H, *J*_{gem} = 18.5 Hz, *J*_{1α,3β} = 1.2 Hz, H-6), 12.0 (br s, 1H, H-COOH). ¹³C NMR (200 MHz, DMSO-*d*₆): 29.8 (C-11), 33.8 (C-12), 33.9 (NCH₃), 43.1 (C-3), 44.4 (C-9b); 49.5 (C-1), 55.7 (OCH₃), 62.7 (C-3a), 115.9 (C-8), 120.3 (C-6), 126.6 (C-9a), 128.5 (C-7), 130.2 (C-5a), 157.3 (C-9), 161.6 (C-5), 174.0 (C-10), 212.6 (C-2) ppm. MS (ESI): M+H: m/z 318.13320, calcd value for C₁₇H₂₀NO₅: 318.13360 (*A*: -1.2 ppm). MS² of m/z 318: m/z 300 (100), 258 (2).
- 14. Spectral data are as follows for compound 8. IR (KBr): 3409, 1745, 1733, 1671, 1261, 1053, 758 cm⁻¹. ¹H NMR (800 MHz, DMSO-d₆): 2.01–2.10 (m, 3H, H_x-11, H_x-12, H_a-3), 2.26–2.30 (m, 1H, H_y-12), 2.35–2.39 (m, 1H, H_y-11), 2.58 (dd, 1H, J_{gem} = 18.5 Hz, J_{19,3β} = 1.2 Hz, H_β-1, 2.62 (ddt, 1H, J_{gem} = 18.5 Hz, J_{19,3β} = 8.0 Hz, J_{38,1β} = 1.2 Hz, H_β-3), 3.46 (dd, 1H, J_{gem} = 18.5 Hz, J_{10,3α} = 2.0 Hz, H_α-1), 3.51 (s, 3H, C(10)–OCH₃), 3.83 (s, 3H, C(9)–OCH₃), 4.02 (ddd, 1H, J_{58,6} = 1.2 Hz, H=8), 7.39 (dd, 1H, J_{7,8} = 8.3 Hz, J_{6,6} = 1.2 Hz, H=9), 7.61 (dd, 1H, J_{6,7} = 7.7 Hz, J_{6,8} = 1.2 Hz, H=6), 8.28 (d, 1H, J_{43a} = 4.9 Hz, H-4). ¹³C NMR (200 MHz, DMSO-d₆): 29.7 (C-11), 33.3 (C-12), 44.1 (C-9b), 45.4 (C-3), 49.2 (C-1), 51.3 (C(10)–OCH₃), 55.0 (C-3a), 55.7 (C(9)–OCH₃), 116.1 (C-8), 120.1 (C-6), 127.3 (C-9a), 128.4 (C-7), 130.2 (C-5a), 157.5 (C-9), 162.9 (C-5), 172.9 (C-10), 213.2 (C-2). MS (ES1): M+H: m/z 318.13320, calcd value for C₁₇H₂₀NO₅: 318.13360 (*A*: -1.3 ppm). MS² of m/z 318: m/z 286 (100), 244 (4).